- (1) Sodium dihydrogenphosphate; NaH₂PO₄; [7558-80-7]
- (2) 2-Propanone (acetone); C₃H₆O; [67-64-1]
- (3) Water; H₂O; [7732-18-5]

ORIGINAL MEASUREMENTS:

Ferroni, G.; Galea, J.; Antonetti, G. Bull. Soc. Chim. Fr. 1974, 12, (Pt. 1), 273-81.

VARIABLES:

Composition at 25°C.

PREPARED BY:

J. Eysseltová

EXPERIMENTAL VALUES:

A miscibility gap was found in the $NaH_2PO_4-C_3H_6O-H_2O$ system.

The results for the isothermal binodal curve at 25°C are:

upper layer

lower layer

	14	H ₂ O	C3H60	NaH ₂ PO		H ₂ 0	C3H60	NaH2PO4	
a eα	soli phas	mass%	mass%	mass%	ρ/g cm ⁻³	mass%	mass%	mass%	$\rho/g cm^{-3}$
	A					∿ 0	100	∿ 0	0.7940
		44.21	0.98	54.81	1.5317	6.91	92.99	0.10	0.8032
		46.58	1.18	52.24	1.4930	24.03	75.74	0.23	0.8343
		48.24	1.25	50.51	1.4684	47.05	51.85	1.10	0.8941
		51.89	1.66	46.44	1.4125	57.45	41.16	1.38	0.9066
		63.64	2.19	34.17	1.2694	63.47	34.12	2.42	0.9304
		71.32	7.15	21.53	1.1344	72.90	21.35	5.75	0.9807
	В		solution	critical .		72.22	9.44	18.44	1.1022
	С					43.90	0	56.10	1.5576
		46.58 48.24 51.89 63.64	1.18 1.25 1.66 2.19 7.15	52.24 50.51 46.44 34.17 21.53	1.4930 1.4684 1.4125 1.2694	24.03 47.05 57.45 63.47 72.90 72.22	75.74 51.85 41.16 34.12 21.35 9.44	0.23 1.10 1.38 2.42 5.75 18.44	0.8343 0.8941 0.9066 0.9304 0.9807 1.1022

^a The solid phases are: $A = NaH_2PO_4$; $B = NaH_2PO_4 \cdot H_2O$; $C = NaH_2PO_4 \cdot 2H_2O$.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The mixtures were equilibrated by stirring in a thermostat for 48 hours. This was done in the dark to prevent photodecomposition. The dihydrogenphosphate ion content was determined by an automatic potentiometric pH titration after evaporating the solution to dryness and dissolving the residue in bidistilled water. The 2-propanone content was determined iodometrically using a potentiometric titration.

SOURCE AND PURITY OF MATERIALS:

The mixtures were equilibrated by stirring in a thermostat for 48 hours. This was done in the dark to prevent photodecomposition. The dihydrogenphosphate ion content The water was twice distilled and deaerated.

ESTIMATED ERROR:

The temperature was held to within $\pm 0.1~\mathrm{K}$. The precision of the analyses was 0.5%.

REFERENCES:

- (1) Sodium dihydrogenphosphate; NaH₂PO₄; [7558-80-7]
- (2) Sodium perchlorate; NaClO₄; [7601-89-0]
- (3) 2-Propanone (acetone); C₃H₆O; [67-64-1]
- (4) Water; H₂O; [7732-18-5]

ORIGINAL MEASUREMENTS:

Ferroni, G.; Galea, J.; Antonetti, G. Bull. Soc. Chim. Fr. <u>1974</u>, 12, (Pt. 1), 273-81.

VARIABLES:

Concentration of $NaClO_4$ at $25^{\circ}C$.

PREPARED BY:

J. Eysseltová

EXPERIMENTAL VALUES:

Composition of the saturated solutions at 25°C.

	1 mol NaClO4/dm3			3 mols NaClO4/dm3		
н ₂ 0 са	NaH ₂ PO ₄	sol:	-	NaH ₂ PO ₄	solic	
c	mo1/dm ³	pha	se	mol/dm ³	phase	2
100	4.912 Na	aH ₂ PO ₄	·2H ₂ O	2.400	NaH ₂ PO ₄	•2H ₂ O
90.9	1.089 b	inodal	curve	0.741	binodal	curve
83.3	0.241	11	.11	0.029	**	11
66.7	0.026	11	11	0.0052	11	11
50.0	0.0061	. 11	"	0.0024	NaH2PO4	H ₂ 0
33.3	∿7.5 x 10 ⁻⁴	4 11	11	4.2 x 10	4 -,,	-
9.1	∿6 x 10 ⁻⁶	11	H	5 x 10 ⁻⁶	"	
0.0	10 ⁻⁶	NaH ₂ 1	²⁰ 4	10 ⁻⁷	NaH ₂ PC	O ₄

 $a_{
m The}$ concentration units are: mol/100 mols of solvent.

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The mixtures were equilibrated by stirring in a thermostat for 48 hours. This was done in the dark to prevent photodecomposition. The dihydrogenphosphate ion content was determined by an automatic potentiometric pH titration after evaporating the solution to dryness and then dissolving the residue in bidistilled water. The 2-propanone content was determined iodometrically using a potentiometric titration.

SOURCE AND PURITY OF MATERIALS:

Reagent grade materials were used. The ${
m NaH_2PO_4}$ was dehydrated at $100^{\circ}{
m C}$ and stored in a vacuum over NaOH. The water was bidistilled and deaerated.

ESTIMATED ERROR:

The temperature was constant to within ± 0.1 K. The analyses had a precision of $\pm 0.5\%$.

REFERENCES:

- (1) Disodium hydrogenphosphate; Na₂HPO₄; [7558-79-4]
- (2) Water; H₂O; [7732-18-5]

EVALUATOR:

J. Eysseltová Charles University Prague, Czechoslovakia

May 1985

CRITICAL EVALUATION:

THE BINARY SYSTEM

Solubility data have been reported for the temperature interval 273-373 K (1), for the 272-313 K interval (2), and at 273, 291 and 298 K (3). Wendrow and Kobe (4) report their own extrapolated data as well as data obtained by others (5). Older data (7-13) are cited in the article by D'Ans and Schreiner (6). But these data appear to have a systematic error and were eliminated from consideration during the first graphical examination of the material. On the other hand, some data from studies of multicomponent systems (14-19) were consistent with those reported by others (1-3) and were included in the evaluation procedure.

Several hydrates of disodium hydrogenphosphate have been reported. Wendrow and Kobe (4) stated that the transition temperatures of the dodecahydrate to the heptahydrate and of the heptahydrate to the dihydrate were 308.7 and 321.2 K, respectively. A more precise determination of these values (6) gives transition temperatures of 308.55 and 321.55 K, respectively. There is also a report of the existence of two forms of the dodecahydrate with a transition temperature of 302.8 K (2), but this has not been confirmed by any other investigators. The transition temperature of the dihydrate to the anhydrous salt was said to be 368.2 K (4).

All the experimental data that were not eliminated in the first graphical examination were evaluated by the method described in chapter 3. The data were fitted to equation [1]. The precision of the published data was estimated to be about the same as

$$\ln x/x_0 = A \cdot (1/T - 1/T_0) + B \cdot \ln(T/T_0) + C \cdot (T - T_0)$$
 [1]

that for sodium dihydrogenphosphate and hence, the criteria for the selection of relevant points were the same as those used in chapter 3. However, these criteria could be applied completely only to the data for the dodecahydrate. For the heptahydrate and the dihydrate the data in the different reports were not in sufficiently good agreement and the selection of values for \mathbf{x}_0 was based on the results of only one report (1). Table I is a summary of the solubility data.

During the iteration procedure practically all the data except those of Shiomi (1) were eliminated. Therefore, the results of this procedure are considered to be tentative.

The values for the parameters of equation [1] are given in Table II while in Table
III the solubility values calculated from equation [1] are given.

MULTICOMPONENT SYSTEMS

Solubility data have been reported for several ternary and quaternary systems but in only a few instances have data for a given system been reported by more than one investigator(s). In three of the systems solid phases other than the components or their hydrates have been reported.

Two reports (3,15) give data for the $Na_2HPO_4-H_2O_2-H_2O$ system at 273 K but a comparison of the two reports cannot be made because the concentration range studied in one report (3) is too narrow. The other article (15) reports the presence of the two compounds $Na_2HPO_4\cdot 1.5H_2O_2$ [13769-82-9] and $Na_2HPO_4\cdot 2.5H_2O_2$ [13769-83-0] at H_2O_2 concentrations greater than 27 mass% for this system.

Data for the $Na_2HPO_4-H_3BO_3-H_2O$ system at 298 K have been reported by Beremzhanov, et al. (20). The results are analogous to those for the $NaH_2PO_4-NaBO_2-H_2O$ system reported by the same authors (21) and discussed in chapter 4. The appearance of $Na_2B_4O_7\cdot 10H_2O$ [61028-24-8] as a solid phase suggests that the system should be treated as part of the $Na_2O-B_2O_3-P_2O_5-H_2O$ system.

A similar situation exists with respect to the Na₂HPO₄-Na₂SiO₃-H₂O system. Data for this system at 293 K were reported by Manvelyan, et al. (22). The formation of Na₃PO₄·12H₂O [10101-89-0] in this system is an indication of its pseudo-ternary character.

There is no evidence for the formation of solid solutions and/or ternary compounds in the other multicomponent systems for which data are available.

There is only one report giving data for the systems Na₂HPO₄-Na₂H₂EDTA-H₂O (17), Na₂HPO₄-NaNO₃-H₂O (23) and Na₂HPO₄-NaCl-H₂O (24). All these data were obtained at 298 K. Makin and his co-workers have reported data for several systems containing Na₂HPO₄ as a component. There are two reports for the Na₂HPO₄-Na₂SO₄-H₂O system at 298 K (18, 19). This group has also published data for two quaternary systems: the

 $Na_2HPO_4-NaNO_3-Na_2SO_4-H_2O$ system (25); and the $Na_2HPO_4-NaNO_3-NaC1-H_2O$ system (26), both at (continued next page)

- (1) Disodium hydrogenphosphate; Na₂HPO₄; [7558-79-4]
- (2) Water; H₂O; [7732-18-5]

EVALUATOR:

J. Eysseltová Charles University Prague, Czechoslovakia

May 1985

(Table continued on next page)

					ма	у 1985			
CRITICAL	EVALUATIO		D-1.1- T	14 C N VDO					
			Table I. Solubi	lity of Na ₂ HPO	4 in water	•			
/··		_	weight	- 1	_	_	weight		
T/K	mass%	ref.	init/final	T/K	mass% ,	ref.	init/final		
Na ₂ HPO ₄ ·12H ₂ O									
268.5	1.43	2	1/1	298.30	10.74	1	1/1		
273.2	1.605	3	2/0	298.30	10.72	1	2/2		
	1.6	15	2/0	298.60	10.97	1	1/1		
273.8	1.71	1	2/0	298.60	10.98	1	1/1		
279.7	2.66	2	1/1	298.60	10.96	1	1/1		
283.41	3.43	1	1/0	298.70	11.05	1	1/1		
283.41 283.51	3.42 3.46	1 1	1/0 4/0	298.70 298.70	11.04 11.09	1 1	1/1 1/1		
288.26	4.97	1	1/1	301.0	12.40	2	1/1		
288.26	4.96	i	1/1	301.8	13.70	2	1/0		
291.2	5.985	3	1/0	302.2	13.82	2	1/0		
293.10	6.77	2	1/0	302.7	14.66	2	1/0		
293.39	7.30	1	1/0	303.3	16.28	2	1/0		
293.39	7.32	1	1/0	303.36	17.22	1	1/1		
293.39	7.31	1	2/0	303.36	17.27	1	1/1		
295.92	8.20	2	1/0	303.41	17.76	1	3/0		
297.30	8.70	2	1/0	303.41	17.78	1	1/0		
298.2	10.829	3	1/0	303.41	17.74	1	1/0		
298.2	10.59	17	1/1	303.41	17.44	1	1/0		
298.2	10.32	18, 19	2/0	303.41	17.77	1	1/0		
298.2 298.2	10.80 10.4	16 14	1/0	303.91	18.98	1 1	1/0 1/0		
298.2	10.4	17	1/0 1/1	303.91 303.91	18.96 18.97	1	1/0		
2,0.2	10.00	17	±/±	306.19	23.59	i	2/2		
				306.29	23.89	1	1/1		
				306.29	23.88	ī	1/1		
			Na ₂ 1	нро ₄ •7н ₂ 0					
309.42	31.20	1	7/7	313.44	35.42	1	2/0		
309.42	31.21	ī	1/1	313.44	35.42	ī	1/0		
309.42	31.22	ī	1/1	318.29	40.68	î	1/1		
309.42	31.23	ī	1/1	318.29	40.69	1	1/1		
310.42	32.23	1	3/3	318.29	40.71	ī	1/1		
310.42	32.19	1	2/2	318.29	40.72	1	1/1		
310.42	32.18	1	1/1	320.5	43.37	1	1/1		
310.42	32.22	1	1/1	320.5	43.36	1	1/1		
313.44	35.46	1	2/0	321.3	44.45	1	2/2		
313.44	35.43	1	1/0	321.3	44.48	1	1/1		
			Na ₂	нро ₄ •2н ₂ о					
323.37	44.57	1	1/1	343.41	46.83	1	1/1		
323.37	44.55	1	1/1	353.54	48.65	1	2/0		
323.37	44.54	1	1/1	353.54	48.67	1	1/0		
323.37	44.56	1	1/1	362.89	50.70	1	1/1		
328.32	44.86	1	1/1	362.89	50.71	1	1/1		
328.32	44.88	1	1/1	367.90	51.76	1	1/0		
328.42	44.94	1	1/1	367.90	51.78	1	1/0		
328.42	44.95 45.36	1	1/1	367.90 369.01	51.77 51.71	1	1/0		
333.38 333.38	45.35	1 1	2/2 1/1	370.01	51.71	1 1	2/0 1/1		
343.41	46.84	1	1/1	370.01	51.22	1	1/1		
343.41	46.86	ī	1/1	372.92	50.52	i	1/0		
~ · ~ T · T · M		-	-, -	372.92	50.53	î	2/0		
						_	-, -		

- (1) Disodium hydrogenphosphate; Na₂HPO₄; [7558-79-4]
- (2) Water; H₂O; [7732-18-5]

EVALUATOR:

J. Eysseltová Charles University Prague, Czechoslovakia

May 1985

CRITICAL EVALUATION:

Table II. Parameters for equation [1].

	Na ₂ HPO ₄ ·1	2н ₂ 0	Na ₂ HPO ₄ ·7	H ₂ 0	Na ₂ HPO ₄ ·2	н ₂ 0
Parameter	value	σ^{a}	value	σ^a	value	σ^{a}
A	-1.989×10^6	5000	-7.56×10^5	300	-1.546×10^5	500
В	-1.379×10^4	50	-4.79×10^3	20	887	5
C	24.0	0.1	7.63	0.03	-1.264	0.005
×o	0.014714		0.064963		0.10040	
To	298.2		313.4		343.4	

 $a_{\mbox{\scriptsize The standard deviation for the parameter.}}$

Table III. Tentative values, calculated from equation [1], for the solubility of ${\rm Na_2HP0_4}$ in water.

		Na ₂ HPO ₄ ·12H ₂ O	
T/K	mole fraction	mole/kg	mass%
273.2	0.0021371	0.12	1.66
278.2	0.0037242	0.21	2.87
283.2	0.0055018	0.31	4.19
288.2	0.0074979	0.42	5.63
293.2	0.010172	0.57	7.51
298.2	0.014714	0.83	10.55
303.2	0.024149	1.37	16.34
308.2	0.047504	2.77	28.25
309.45 ^a	0.058234	3.43	32.80
		Na2HPO4.7H2O	
309.45	0.058234	3.43	32.80
311.2	0.058862	3.47	33.06
313.2	0.064287	3.82	35.17
315.2	0.070110	4.19	37.32
317.2	0.076443	4.60	39.53
319.2	0.083431	5.06	41.82
321.2 _h	0.091254	5.58	44.23
321.6 ^b	0.092892	5.69	44.71

aThe dodecahydrate to heptahydrate transition temperature.

Both transition temperatures were found graphically by the evaluator.

 $^{^{}b}$ The heptahydrate to dihydrate transition temperature.

- (1) Disodium hydrogenphosphate; Na₂HPO₄; [7558-79-4]
- (2) Water; H₂O; [7732-18-5]

EVALUATOR:

J. Eysseltova Charles University Prague, Czechoslovakia

May 1985

CRITICAL EVALUATION:

Table III, contd.

Na2HPO4.3H2O

T/K	mole fraction	mole/kg	mass%
321.6	0.092892	5.69	44.71
323.2	0.092657	5.67	44.64
328.2	0.093014	5.70	44.75
333.2	0.094587	5.80	45.20
338.2	0.097088	5.97	45.92
343.2	0.10026	6.19	46.81
348.2	0.10386	6.44	47.78
353.2	0.10762	6.70	48.78
358.2	0.11126	6.95	49.72
363.2	0.11451	7.18	50.52
368.2	0.11707	7.36	51.15
373.2	0.11865	7.48	51.53

298 K. In the articles by Makin and his co-workers (18, 19, 23-26), data for the solubility of $\mathrm{Na_2HPO_4}$ in water are also included and these form a consistent set of data. Furthermore, the data in these articles may be compared with respect to the composition of solutions saturated with respect to two salts, but in one of these reports (26) the headings "NaNO3" and "NaC1" for two of the columns appear to have been interchanged. It appears also that some incorrect constants have been used in calculating the mol% values in this paper. The evaluator was unable to reproduce these calculations.

No solid solutions or ternary compounds were found in the Na₂HPO₄-MgHPO₄-H₂O system at 298 K (17) but potassium sodium hydrogen phosphate, NaKHPO₄·5H₂O [14518-27-5] was observed in the Na₂HPO₄-K₂HPO₄-H₂O system at 273 and 298 K (16), and sodium ammonium hydrogenphosphate, NaNH₄HPO₄ [13011-54-6] was found to be present in the Na₂HPO₄-(NH₄)₂HFO₄-H₂O system at 298 K (14). The latter compound was also observed in the quaternary system 2Na⁺, 2NH₄⁺||HPO₄²-, C1⁻-H₂O at 273 and 298 K (27). However, the data in this report (27) are at variance with those of Platford (14) with respect to the composition of solutions saturated with both NaNH₄HPO₄ and Na₂HPO₄·12H₂O as well as with those saturated with both NaNH₄HPO₄ and (NH₄)₂HPO₄. The data in (27) also disagree with those of Makin (24) with respect to the composition of the eutonic solution of the Na₂HPO₄-NaCl-H₂O system at 298 K. The values for the Na₂HPO₄ content in the work of Lauffenburger and Brodsky (27) seem to have a large negative systemtic error.

Values have been reported for three systems having an organic component. Ferroni, et al. (28) report values for the $\rm Na_2HPO_4-CH_3COCH_3-H_2O$ system and for two sections through the $\rm Na_2HPO_4-CH_3COCH_3-H_2O$ system at 298 K. Bruder, et al. (29) report solubility data for the $\rm Na_2HPO_4-CH_3OH-H_2O$ system at 333 K. All three systems are characterized by limited miscibility.

- (1) Disodium hydrogenphosphate; Na, HPO,; [7558-79-4]
- (2) Water; H₂O; [7732-18-5]

EVALUATOR:

J. Eysseltová Charles University Prague, Czechoslovakia

May 1985

CRITICAL EVALUATION:

REFERENCES

- 1. Shiomi, Ts. Mem. Col. Sci. Emp. (Kyoto) 1908, 1, 406.
- 2. Hammick, D.L.; Goadby, H.K.; Booth, H. J. Chem. Soc. 1920, 67, 1589.
- 3. Menzel, H.; Gabler, C. Z. Anorg. Chem. 1929, 177, 187.
- 4. Wendrow, B.; Kobe, K.A. Ind. Eng. Chem. 1952, 44, 1439.
- 5. Menzies, A.W.; Humphrey, K.C. Orig. Com. 8th Intern. Congr. Appl. Chem. 1912, 2, 175. This work was quoted in ref. (4).
- 6. D'Ans. J.; Schreiner, O. Z. Anorg. Chem. 1911, 75, 95. 7. Mulder, G.J. Bijdragen tot de geschiedenis van het scheikundig gebonden water, Rotterdam 1894. Quoted in ref. (6).

- 8. Tilden, W.A. J. Chem. Soc. 1884, 45, 268. Quoted in ref. (6).
 9. Ferrein, A. Pharm. Viertelj. 1858, 7, 244; Jahresber, 1858, 117. Quoted in ref. (6).
 10. Neese, N. Russ. Zeitschr. f. Pharm. 1863, 1, 101; Jahresber, 1863, 180. Quoted in ref. (6).
- 11. Schiff, H. Lieb. Ann. 1859, 109, 362. Quoted in ref. (6).
 12. Guthrie, F. Phil. Mag. 1876, 5, 212; Phys.-Chem. Tabellen 558. Quoted in ref. (6).
 13. Muller, A. J. f. Prakt. Chem. 1860, 80, 202; 1865, 95, 52. Quoted in ref. (6).
- 14. Platford, R.F. J. Chem. Eng. Data 1974, 19, 166.
 15. Ukraintseva, E.A. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. 1963, 3, 14.
- 16. Ravich, M.I. Popova, Z.V. Izv. Akad. Nauk SSSR, Ser. Khim. 1942, 268.
- 17. Dudakov, V.G.; Shternina, E.B. VINITI Nr. 469-74, 1974.
- 18. Makin, A.V. Uch. Zapiski Gos. Ped. In-ta 1959, 30, 291.
- 19. Druzhinin, I.G.; Makin, A.V. Izv. Akad. Nauk Kirg. SSR. Ser. Estestv. i Tekhn. Nauk 1960, 2, 19.
- 20. Beremzhanov, B.A.; Savich, R.F.; Kunanbaeva, G.S. Prikl. Teor. Khim. 1978, 8.
- 21. Beremzhanov, B.A.; Savich, R.F.; Kunanbaeva, G.S. Khim. Khim. Tekhnol., (Alma Ata) 1977, 22, 15.
- 22. Manvelyan, M.G.; Galstyan, V.D.; Organesyan, E.B. Sayamyan, E.A. Arm. Khim. Zh. 1973, 26, 510.
- 23. Makin, A.V.; Karnaukhov, A.S. Zh. Neorg. Khim. 1957, 2, 1420.
- 24. Makin, A.V.; Zh. Neorg. Khim. 1957, 2, 2794. 25. Makin, A.V.; Lepeshkov, I.N. Zh. Neorg. Khim. 1964, 9, 495.
- 26. Makin, A.V.; Zh. Neorg. Khim. 1958, 3, 2764.
- 27. Lauffenburger, R.; Brodsky, M. Compt. Rend. <u>1938</u>, 206, 1383. 28. Ferroni, G.; Galea, J.; Antonetti, G. Bull. <u>Soc. Chim. Fr. 1974</u>, 12 (Pt. 1), 273.
- 29. Bruder, K.; Vohland, P.; Schuberth, H. Z. Phys. Chem. Leipzig 1977, 4, 721.